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The method of joint probability distribution functions is

applied in order to estimate the structure-factor moduli of the

anomalous scatterer substructure both in the SAD (single-

wavelength anomalous dispersion) and in the MAD (multi-

wavelength anomalous dispersion) cases. The experimental

data |F�1 |, |Fÿ1 |, . . . , |F�n |, |Fÿn | measured at n wavelengths are

used simultaneously to estimate the value of |Foa| arising from

the normal scattering of the anomalous scatterers. A practical

procedure is described that, when applied to the experimental

diffraction data of several proteins, shows robustness and

ef®ciency.
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1. Notation

N: number of atoms in the unit cell.

a: number of anomalous scatterers in the unit cell.

na = N ÿ a: number of non-anomalous scatterers.

fj = f 0
j + �fj + if 00j = f 0j + if 00j : scattering factor of the jth atom. f 0

is its real and f 00 its imaginary part. The thermal factor is

included.

�Np =
PN

j�1�f 02j � f 002j �. The summation is calculated at the pth

wavelength and is extended to all atoms in the unit cell.

�o =
Pna

j�1�f o
j �2. The summation is extended to all non-

anomalous scatterers in the unit cell.

�oa =
Pa

j�1�f o
j �2. The summation is extended to all the

anomalous scatterers in the unit cell.

F� = jF�j exp�i'�� = Fh =
PN

j�1 fj exp(2�ihrj).

E� = F�=("
P

N)1/2 = R exp�i'�� = A+ + iB+.

Fÿ = |Fÿj exp(i'ÿ) = Fÿh =
PN

j�1 fj exp(ÿ2�ihrj).

Eÿ = Fÿ=("
P

N)1/2 = G exp(i'ÿ) = Aÿ + iBÿ.

F�p , Fÿp , E�p = A�p + iB�p , Eÿp = Aÿp + iBÿp denote the values for

the pth wavelength.

n: number of wavelengths.

Foa = |Foaj exp(i'oa) =
Pa

j�1 f o
j exp(2�ihrj).

Eoa = Foa=("
P

oa)1/2 = Roa exp(i'oa) = Aoa + iBoa.

�ano = |F� | ÿ |Fÿ |.

The paper by Burla et al. (2002) will be referred to as paper I.

2. Introduction

The roles of the SAD (single-wavelength anomalous scat-

tering) and MAD (multi-wavelength anomalous dispersion)

techniques have notably increased in the last few years as a

consequence of the tunability of synchrotron radiation. If

the data are accurately measured, the crystal structure may

be solved by single-wavelength anomalous diffraction

(Hendrickson & Teeter, 1981; Wang, 1985; Dauter et al., 2002).

The MAD technique requires more experimental engagement

but may provide more accurate phase estimates.



Two procedures can in principle be used for determining

phases via SAD or MAD.

(i) Use of the triplet invariant estimates given six diffraction

magnitudes (Hauptman, 1982; Giacovazzo, 1983). The protein

phases are directly derived via a tangent formula without any

prior knowledge of the anomalous scatterer positions. The

experimental success of this approach has so far been modest

and may only be used for the SAD case.

(ii) The two-step technique, in which the structural para-

meters of the anomalous scatterers are ®rst determined and

re®ned and then, in the second step, the protein phases are

assigned. The technique has been described by several authors

(Karle, 1980; Hendrickson, 1985; PaÈhler et al., 1990; Terwil-

liger, 1994) and involves the interpretation of the Patterson

function (Sheldrick et al., 1993; Sheldrick, 1998; Terwilliger &

Berendzen, 1999; Grosse-Kunstleve & Brunger, 1999). It

constituted a standard in the ®eld until a few years ago, when

second-generation direct-methods programs (Miller et al.,

1994; Sheldrick, 1998; Burla et al., 2001; Foadi et al., 2000)

erupted into the area of macromolecular crystallography. The

use of such programs was encouraged by the practice of

introducing Se atoms into a protein as selenomethionines:

indeed, the number of anomalous scatterers may be quite

large, sometimes greater than 50.

Shake-and-Bake (Smith et al., 1998; Howell et al., 2000), as well

as SHELXD (Schneider & Sheldrick, 2002), derive the co-

ordinates of the anomalous substructure from a single wave-

length: the other wavelengths, when available, are used to

identify and eventually con®rm the correct solution. A new

approach was suggested in paper I, in which the authors

applied the rigorous method of joint probability distribution

functions to estimate the amplitudes of the structure factors of

the anomalously scattering substructure given the experi-

mental diffraction moduli. The method was restricted to two

wavelengths: its advantage is that the estimates can simulta-

neously exploit the anomalous and the dispersive differences.

The ®rst applications were very encouraging.

This paper is devoted to the following.

(a) Generalizing the method suggested in paper I to the

n-wavelength case (including the n = 1 case).

(b) De®ning a robust procedure for ®nding the anomalously

scattering substructure. The approach does not use the dual-

space recycling techniques used by Shake-and-Bake and

SHELXD, but employs the tangent formula as the ®rst step

and real-space techniques in the next steps, as suggested in the

paper by Burla et al. (2003). Furthermore, no use of the

Patterson function is made, as is performed in SHELXD.

(c) Describing the applications to an extended set of

experimental data (see Table 1, where the main crystallo-

chemical properties of the test structures are given).

3. The joint probability distribution function
P (Roa|R1, . . . , Rn, G1, . . . , Gn)

As in paper I, the positions of all the atoms in the asymmetric

unit will be the primitive random variables of our probabilistic

approach. Furthermore,

F�j � F�aj � F�naj � j��j j exp�i��j �
Fÿj � Fÿaj � Fÿnaj � j�ÿj j exp�i�ÿj �; j � 1; :::; n;

where �+ and �ÿ are the measurement errors relative to F�

and Fÿ, respectively; they will be treated as additional

primitive random variables.

In paper I, the n = 2 wavelength case was studied. The joint

probability distribution

P2 � P�Eoa;E�1 ;Eÿ1 ;E�2 ;Eÿ2 �
was derived in the form of the ten-dimensional (4n + 2)

Gaussian distribution [see equation (3) in paper I],

P2 � P�Aoa;A�1 ;A�2 ;Aÿ1 ;Aÿ2 ;Boa;B�1 ;B�2 ;Bÿ1 ;Bÿ2 �
� �ÿ5�det K�1=2 exp�ÿ 1

2 TKÿ1T�; �1�
where K is a symmetric variance±covariance square matrix,

Kÿ1 = {�ij} is its inverse and T is a suitable vector with

components de®ned in terms of the variables Aoa, A�1 , A�2 , Aÿ1 ,

Aÿ2 , Boa, B�1 , B�2 , Bÿ1 , Bÿ2 .

The same mathematical technique may be used for the

study of the distribution

Pn � P�Aoa;A�1 ;A�2 ; :::;A�n ;Aÿ1 ;Aÿ2 ; :::;Aÿn ;Boa;B�1 ;B�2 ; :::;

B�n ;Bÿ1 ;Bÿ2 ; :::;Bÿn �
:

We obtained the joint probability density (details are not given

for brevity)

Pn � �ÿ�2n�1��det K�1=2 exp�ÿ1
2TKÿ1T�; �2�

where K is a symmetric square matrix of order (4n + 2),

Kÿ1 = {�ij} is its inverse and T is a suitable vector with

components de®ned in terms of the variables Aoa, A�1 ,

A�2 , . . . , Bÿn .

In paper I we explicitly de®ned, for n = 2, the algebraic

expression of all the elements of the matrix K: since K is of
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Table 1
Set of test structures.

nwl is the number of wavelengths used in the experiment, An. scat. gives the
atomic species of the anomalous scatterers, na is the number of anomalous
scatterers and Resol. is the limiting resolution to which the data are measured.

Protein
code

Space
group nwl

An.
scat. na

Resol.
(AÊ ) Reference

ApD C2221 4 Se 3 2.2 Walsh et al. (1999)
JIA C2221 4 Se 8 2.5 Li et al. (2000)
KPR P42212 3 Se 8 2.3 Matak-Vinkovic et al. (2001)
PSCP P62 3 Br 13 1.8 Dauter et al. (2001)
Cyanase P1 4 Se 40 2.4 Walsh et al. (2000)
Tm0665 P21 3 Se 45 2.0 Lesley et al. (2002)
TGEV P21 4 Se 60 2.9 Anand et al. (2002)
AEP P21 3 Se 66 2.55 Chen et al. (2000)

Glucose
isomerase

I222 1 Mn 1 1.5 Dauter et al. (2002)

2Zn insulin R3 1 Zn 2 1.0 Dauter et al. (2002)
Ca subtilisin P212121 1 Ca 3 1.75 Dauter et al. (2002)
CauFd P43212 1 Fe 8 0.94 Dauter et al. (2002)
DNA P212121 1 P 10 1.5 Dauter et al. (2002)
Lysozyme P43212 1 S, Cl 10 + 7 1.53 Dauter et al. (2002)
CUTA1 P212121 1 Hg 18 2.5 Calderone et al. (2002)
APT P21 1 Br 22 1.8 Dauter et al. (2002)
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order 10, we derived the expressions of ne = (9 � 10)/2 + 10 =

55 entries. For any value of n, we should now render explicit

the values of

ne � ��4n� 1��4n� 2�=2� �4n� 2�� � �2n� 1��4n� 3�
entries. We see that ne = 105 for n = 3, ne = 171 for n = 4, ne = 253

for n = 5 and so on. The most useful way of dealing with this

problem is to de®ne an algorithm for deriving the expressions

of the entries of K for any value of n rather than giving them

explicitly. Such an algorithm is described in Appendix A. It is

also shown in Appendix A that the association of the various

components of T with the various �ij is trivial. Accordingly, the

full distribution (2) has been algorithmically constructed in

our computer program; it is possible to use up to ®ve wave-

lengths (the n = 1 case included).

The next steps for obtaining the estimate of Roa are as

follows.

(i) Change (2) into

P�Roa;R1; :::;Rn;G1; :::;Gn; 'oa; '
�
1 ; :::; '

�
n ; '

�
1 ; '

ÿ
1 ; :::; '

ÿ
n �
�3�

via the change of variables

Aoa � Roa cos 'oa; Boa � Roa sin 'oa;

A�j � Rj cos '�j ; B�j � Rj sin '�j ;

Aÿj � Gj cos 'ÿj ; Bÿj � Gj sin 'ÿj :

(ii) Integrate (3) over the phase variables and de®ne the

conditional distribution

P�RoajR1; :::;Rn;G1; :::;Gn�:

(iii) Calculate the expected value

hRoajR1; :::;Rn;G1; :::;Gni:

At the end of this process, we obtain

hRoajR1; :::;Gni � 2ÿ1��=�11�1F1�ÿ1=2; 1;ÿX2=�11�; �4�
where 1F1 is the con¯uent hypergeometric function,

X2 � Q2
1 �Q2

2;

Q1 � �12R1 � �13R2 � :::� �1;n�1Rn � �1;n�2G1 � :::
� �1;2n�1Gn;

Q2 � �1;2n�3R1 � �1;2n�4R2 � :::� �1;3n�2Rn � ::: ÿ �1;3n�3G1

ÿ :::ÿ �1;4n�2Gn:

Since 1F1 (ÿ1/2; 1; ÿz2) is well approximated (see paper I) by

the hyperbole y = (1 + 2z2/�1/2)1/2 in the full range (0,1), the

expected value of Roa may be calculated via the simpler

expression

hRoajR1; :::;Gni � 1
2��=�11�1=2�1� 4X2=���11��1=2: �5�

The standard deviation of the estimate is calculated as

described in paper I,

�Roa
� �hR2

oaj:::i ÿ hRoaj:::i2�1=2 � 1ÿ �
4

� �
�ÿ1

11

h i1=2

;

from which

hRoaj:::i
�Roa

� ��=4� � �X2�=�11

1ÿ ��=4�
� �1=2

: �6�

4. The accuracy of the hhhRoa| R1, . . . , Gniii values
Once the moduli Roa have been estimated, a direct phasing

procedure may be applied (see x5); its ef®ciency depends on

some critical steps connected to the use of (5) and (6). We

brie¯y discuss these below.

(i) Is MAD always preferable to SAD? In an ideal (non-

realistic) situation the answer is trivial: MAD should be

preferred because SAD estimates are intrinsically ambiguous

and not available for symmetry-restricted re¯ections. In

practice, however, experimental errors can question the

primacy of the MAD techniques, particularly when SAD data

present a high redundancy of the measurements. We will show

some examples in x6.

(ii) Are the MAD estimates for the n-wavelength case more

accurate than for the (n ÿ 1) or the (n ÿ 2) wavelength cases?

To answer this question, let us examine the intuitive general

conditions for obtaining good estimates in the two-wavelength

case: (a) if f 001 and f 002 are both suf®ciently large they intrinsi-

cally secure good SAD estimates and (b) if, in addition, |�f 01|

and |�f 02| are also both large, they can ef®ciently correct the

twofold ambiguity of the SAD estimates. Such conditions,

however, do not take into full consideration the properties of

the K matrix: in the case of small measurement errors, if f 001 ' f 002
and �f 01 ' �f 02, two columns of K tend to be identical. det(K)

then approaches zero, the problem becomes ill-conditioned

and the resulting phase estimates tend to be unreliable. The

same will occur in the n-wavelength case if one column is the

linear combination of other two columns. Typical results are

shown in Table 2 (columns 2 and 4), where we have applied (5)

to the calculated data of two test structures. The accuracy of

the estimates is measured by the parameter

RA �
P j�Roa�t ÿ ShRoaj::::ijP�Roa�t

;

where (Roa)t is the true value of Roa, hRoa| . . . i is its estimate

via (5) and S is a suitable scale factor. We observe the

following.

(a) The high values of RA for the SAD case mainly arise

from the twofold ambiguity of the estimates. RA does not vary

with the wavelength because we used calculated data without

errors.

(b) For n = 2, the cases in which f 001 and f 002 , as well as �f 01 and

�f 02, are suf®ciently different show better estimates.

(c) The use of three wavelengths provides (on average)

better results than the use of two, but the accuracy depends on

the selected wavelengths (the case in which �f 0 and f 00 are



nearly equal for two wavelengths does not provide good

results).

(d) The case n = 4 does not always provide better estimates

than the cases with n = 3.

It may be wondered whether our probabilistic approach is able

to automatically recognize the different amount of informa-

tion contained in the different sets of wavelengths and to

provide consequent reliabilities of the estimates. A good

probabilistic approach should assign larger variances to the

Roa estimates for unfavourable wavelength sets. To check this

opportunity for each combination of wavelengths quoted in

Table 2, we have computed (columns 3 and 5) the average

value of the estimates hRoa| . . . i/�Roa
as given by (6); we denote

such values as (Roa/�)av. It is evident [see the high correlation

between RA and (Roa/�)av] that our probabilistic approach

correctly assigns small variances to the Roa estimates corre-

sponding to the most informative sets of wavelengths. This

suggests implementation of the following practical procedure:

derive the Roa estimates for each combination of wavelengths,

and then select, for location of the anomalous scatterers, the

one with the largest value of (Roa/�)av.

As an effect of the experimental errors, that which is true

for the calculated data is unfortunately not true for the

experimental data [see the corresponding values of (Roa/�)av

in Table 2]. In particular, the suggestion of selecting the wavelength combination having the largest value of (Roa/�)av

is invalidated.

(iii) Is the error of the estimate dependent on the resolution?

We have no practical evidence of such behaviour: RA is

practically constant with resolution, as may be deduced from

Fig. 1, where, for the experimental data of AEP, cyanase and

TGEV, the RA values are plotted against the resolution.

(iv) Is the error of the estimate dependent on hRoa| . . . i? We

have clear evidence for this trend. In Fig. 2 we show, for the

experimental data of AEP, cyanase and TGEV, the plot of RA

against hRoa| . . . i. Quite wrong estimates are frequent for

small values of hRoa| . . . i; the best estimates are attained for

medium values of hRoa| . . . i, while a loss of accuracy may be

noted for the largest hRoa| . . . i values. This last behaviour,

even if it concerns a limited number of estimates, is not ideal

for the application of direct methods, the success of which is

based on the accuracy of the largest structure-factor moduli.
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Figure 1
The RA value versus the resolution for three test structures when the
experimental data from three wavelengths are used simultaneously.

Figure 2
The RA value versus hRoa| . . . i for three test structures when the
experimental data from three wavelengths (the same as in Fig. 1) are used
simultaneously.

Figure 3
The RA value versus hRoa| . . . i/�Roa

for three test structures when the
experimental data from three wavelengths (the same as in Figs. 1 and 2)
are used simultaneously.

Table 2
ApD and cyanase data.

Values of RA and of (Roa/�)av for the various combinations of wavelengths
(WL). The �f 0 and f 00 values employed for the calculated data at the
wavelengths used are as follows: ApD, (ÿ1.805, 0.646), (ÿ8.582, 3.843),
(ÿ7.663, 3.841), (ÿ2.618, 3.578); cyanase, (ÿ2.112, 0.595), (ÿ9.643, 0.499),
(ÿ8.582, 3.843), (ÿ2.618, 3.578).

ApD
(calc. data)

Cyanase
(calc. data)

ApD
(exp. data)

Cyanase
(exp. data)

WL RA (Roa/�)av RA (Roa/�)av RA (Roa/�)av RA (Roa/�)av

1 32.3 4.9 33.5 4.2 47.2 2.8 55.8 3.4
2 32.1 4.3 33.1 4.2 41.6 3.8 40.8 2.5
3 32.1 4.3 33.3 4.0 40.4 2.9 39.8 2.6
4 32.3 4.3 33.7 4.2 41.4 3.7 39.6 3.4
1-2 13.6 11.3 30.3 4.4 41.4 3.2 39.5 2.9
1-3 6.8 203.0 13.3 8.1 34.9 6.9 41.3 2.8
1-4 31.1 4.2 33.7 4.3 42.0 3.9 47.4 2.8
2-3 32.1 4.5 33.3 4.1 39.7 3.1 39.7 2.8
2-4 31.9 5.2 21.2 5.8 38.4 4.4 43.1 2.8
3-4 33.1 5.4 15.2 8.8 37.5 5.4 44.5 2.9
1-2-3 7.8 264.3 20.6 6.5 36.3 6.1 39.8 3.0
1-2-4 14.8 21.7 25.7 4.8 39.1 3.9 42.6 3.5
1-3-4 22.7 7.7 4.9 18.9 35.0 6.3 43.9 3.5
2-3-4 32.6 5.3 3.6 19.1 38.8 9.1 44.3 2.8
1-2-3-4 19.9 9.3 15.9 7.8 35.8 6.8 41.6 3.5
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A more useful result is obtained if (6) is used. It has been

shown in paper I that high values of hRoa| . . . i do not neces-

sarily correlate with sharp distributions (2): e.g. large values of

hRoa| . . . i may be coupled with small or with large values of

�Roa
, and medium-size values of hRoa| . . . i may show small or

large �Roa
values. If this result is extended to the n-wavelength

case, it may be guessed that smaller values of RA should be

obtained for subsets of re¯ections characterized by small

values of hRoa| . . . i/�Roa
. This expectation is con®rmed in Fig. 3,

where we plot RA against hRoa| . . . i/�Roa
. The reader can

usefully compare the relatively high RA values of the re¯ec-

tions with the largest values of hRoa| . . . i with the relatively

small RA values of the re¯ections with the largest values

of hRoa| . . . i/�Roa
. Accordingly, we decided to select the

re¯ections (for direct-methods applications) in order of

hRoa| . . . i/�Roa
rather than in order of hRoa| . . . i.

5. The phasing procedure

In accordance with the results established in x4, the following

procedure is used to ®nd the positions of the anomalous

scatterers.

Step 1. The program reads and stores the sets Sj, j = 1, . . . , n,

of the observed magnitudes (say |F�|, |Fÿ|) for all n wave-

lengths.

Step 2. Each Sj is placed on an absolute scale by the Wilson

method and the corresponding overall thermal factor is esti-

mated.

Step 3. Matrix K is calculated and (5) and (6) are applied to

obtain the values hRoa| . . . i and hRoa| . . . i/�Roa
. To eliminate ab

initio the less informative cases, we omit from the next

calculations the re¯ections for which, for at least one wave-

length, only one of |F�| and |Fÿ| is measured.

Step 4. The three-phase invariants involving the re¯ections

with the highest hRoa| . . . i/�Roa
values are evaluated. We

experimentally checked the relative usefulness of the Cochran

(1955) formula and of the P10 formula (Cascarano et al., 1984).

We found the second formula more useful; therefore, the P10

formula is the default choice of the program.

Step 5. The tangent formula is used (random starting

approach). Figures of merit (see below) are used to reduce the

number of trial solutions to admit to next steps.

Step 6. The direct-space re®nement techniques used in

SIR2002 (Burla et al., 2002) are used to extend the phase

information (gained in step 5) to a larger set of re¯ections:

only 30% of the re¯ections with the smallest values of

hRoa| . . . i remain unphased. The ®nal calculations of this step

are constituted by automatic cycles of least-squares re®ne-

ment, which aim at re®ning the substructure model provided

by the trial solutions.

Step 7. Suitable ®gures of merit (see below) are used to

recognize the correct substructure models.

Let us now examine the most critical points of the procedure.

(i) The FOMs used in step 5. If the hRoa| . . . i values were

very accurate, the classical ®gures of merit used in the multi-

solution procedures (Germain et al., 1970; Cascarano et al.,

1987, 1992) should easily recognize the true solutions among

the various trials (the anomalous effects reduce the structure

complexity from N, the number of atoms in the unit cell, to a,

the number of the anomalous scatterers). Unfortunately, the

Roa estimates present a non-negligible variance, which is

particularly high for small values of hRoa| . . . i. Therefore, the

powerful ®gures of merit (PSCOMB and CPHASE) based on

the psi0 triplets, negative triplets and negative quartets cannot

be applied. In our procedure, we use only two ®gures of merit,

MABS and ALFCOMB (see Cascarano et al., 1992): the

combined ®gure CFOM is used to eliminate from the next

calculations half of the trial solutions.

(ii) The FOMs used in step 7. Two ®gures of merit, RAT and

RES, are calculated for those trial solutions which overcome

the ®gure of merit ®lter de®ned in step 5.

Figure 4
(a) Scatter plot of RAT versus RES for Tm0665 showing clusters of correct solutions (green) and wrong solutions (red). (b) The corresponding RF
histogram: the number of trials (nt) versus RF.



(a) The ®rst ®gure, RAT, is similar to that used by SIR2002

(Burla et al., 2002),

RAT � CC=hR2
cali;

where

CC � hRoaj:::i2 � w2

 �ÿ hRoaj:::i2


 � � hw2iÿ �
hRoaj:::i4

 �ÿ hRoaj:::i2


 �2� �1=2

��hw4i ÿ hw2i2�1=2
;

where w = D1(hRoa| . . . iRcal/2) is a SIM-like weight,

D1(x) = I1(x)/I0(x) is the ratio of the modi®ed Bessel functions

of order one and zero, respectively, hRoa| . . . i plays the role of

the observed modulus and Rcal is the corresponding modulus

calculated from the substructure model available at that

moment.

The numerator of RAT involves the weights and the

re¯ections actively used in the phasing process (about 70% of

the measured re¯ections) and is expected to be maximum for

the correct solution (this occurs if the phases of the largest

`observed' moduli are de®ned with large weights). The

denominator of RAT is calculated for the re¯ections not

involved in the phasing procedure (about the 30% of the total,

as stated at step 6) and it is expected to be minimum for the

correct solution.

Accordingly, RAT should be maximum for the most

promising trial solutions.

(b)

RES �
P��jFoajcalc ÿ hFoaj:::i

��PhFoaj:::i
;

where |Foa|calc is the value of Foa calculated from the model at

the end of the least-squares re®nement process, hFoa| . . . i is

obtained by multiplying hRoa| . . . i by the scale factor and the

overall thermal factor de®ned by the Wilson plot. It may be

expected that large values of RAT and small values of RES

will select the correct solutions. We show, in Figs. 4(a) and 5(a)

for Tm0665 and AEP, respectively, the distribution of the

solutions in the plane (RAT, RES). The clustering of the

correct solutions is more evident for Tm0665, but in both the

cases we were able to select the correct solutions among the

various trials.

We have therefore decided to use the ratio

RF � �RES� 100�=RAT

as an automatic tool to separate the correct from the wrong

solutions; RF is expected to be a minimum for the good

solutions. In Figs. 4(b) and 5(b) we show the RF histograms for

Tm0665 and AEP, respectively.

RF is able to automatically select the good solutions for all

our test structures.

6. The substructure models

The procedure described in x5 has been applied to all the test

structures quoted in Table 1. The robustness of the method

allowed us to limit the number of trials (in the tangent formula

step) to a maximum of 60 for all the applications. The results

(experimental diffraction data) are shown in Tables 3 and 4.

Let us ®rst examine the SAD case (eight test structures).

For CauFd (see Table 3) only one solution is found; in all the

other cases the density of good solutions is higher than 1/60.

The completeness of the models is also satisfactory (see

Table 3): all or nearly all the anomalous scatterers are

correctly located.

The MAD case (eight structures) allows different attempts

according to the speci®c wavelengths used for obtaining the

estimates provided by (5) and (6). In the ®rst part of Table 3

we quote, for a selected wavelength combination, the number

and the quality of the correct solutions. A complete overview

of the results for each structure and for each wavelength
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Figure 5
(a) Scatter plot of RAT versus RES for AEP showing clusters of correct solutions (green) and wrong solutions (red). (b) The corresponding RF
histogram: the number of trials (nt) versus RF.
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combination is shown in Table 4. In the two tables WL

describes the wavelength combination, nsol is the number of

solutions (over 60 trials): for brevity, naf, the number of

anomalous scatterers automatically located, is only quoted in

Table 3 (when the correct solution is found, its quality is nearly

independent of the wavelength combination). Table 4 shows

that the various wavelength combinations are not equally

informative: a lot of solutions may be found for some of them,

while no correct solution may be identi®ed for others. Thus,

the capacity of working with any wavelength combination is a

reserve of power which cannot be overlooked, particularly in

dif®cult cases. Our method proved able to ®nd the correct

solution for all the test structures.

7. Conclusions

The probabilistic theory started in paper I for obtaining, from

two-wavelength data, the structure-factor moduli of the

anomalous scatterer substructure has been generalized to

SAD and MAD cases. A procedure has been devised which

automatically performs all the steps necessary to locate the

anomalous scatterers. The success of such a procedure

depends on several ingredients: the speci®c combination of

wavelengths, the ef®ciency of our probabilistic method of

estimating Roa, the number of trials explored in the direct-

methods procedure and the ef®ciency of the direct-space

phase-re®nement process. Applications to a large set of test

structures proved the ef®ciency and robustness of our method.

APPENDIX A
Let us consider in Table 5 the geometry of the K matrix for the

case n = 2: inside the box some elements of the matrix are

emphasized (i.e. k12, k27, k35), outside the box, in two rows and

in two columns, the reference variables and their order

number [as they appear in the distribution (1)] are shown.

The emphasized K elements have the following expressions

(see paper I):

k12 � hAoaA�1 i � S9=��oa�N1�1=2

� ��af o
j f 0j1�=���af o2

j ��N�f 02j1 � f 002j1 ��1=2;

k27 � hA�1 B�1 i � 0;

k35 � hA�2 Aÿ2 i � ��o � S2�=�N2

� ���Naf o2
j � ��a�f 02j2 ÿ f 002j2 ��=�N�f 02j2 � f 002j2 �:

If we want to construct the matrix K for the case n = 3, we have

to introduce into the matrix the additional columns shown in

Table 6 (and the corresponding rows). Such rows and columns

represent the covariance terms between the third wavelength

Table 5
The matrix K (boxed) for n = 2.

The two rows (and columns) outside the box indicate the variables with
respect to which the elements of the matrix are calculated and their order
number.

Aoa A�1 A�2 Aÿ1 Aÿ2 Boa B�1 B�2 Bÿ1 Bÿ2
1 2 3 4 5 6 7 8 9 10

Aoa 1 Ð hAoaA�1 i Ð Ð Ð Ð Ð Ð Ð Ð
A�1 2 Ð Ð Ð Ð Ð Ð hA�1 B�1 i Ð Ð Ð
A�2 3 Ð Ð Ð Ð hA�2 Aÿ2 i Ð Ð Ð Ð Ð
Aÿ1 4 Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð
Aÿ2 5 Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð
Boa 6 Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð
B�1 7 Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð
B�2 8 Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð
Bÿ1 9 Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð
Bÿ2 10 Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð

Table 6
Some additional columns of the matrix K for n = 3.

Aoa A�1 A�2 A�3 Aÿ1 Aÿ2 Aÿ3 Boa B�1 B�2 B�3 Bÿ1 Bÿ2 Bÿ3
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Aoa 1 Ð Ð Ð k14 Ð Ð k17 Ð Ð Ð k1,11 Ð Ð k1,14

A�1 2 Ð Ð Ð k24 Ð Ð k27 Ð Ð Ð k2,11 Ð Ð k2,14

A�2 3 Ð Ð Ð k34 Ð Ð k37 Ð Ð Ð k3,11 Ð Ð k3,14

Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð
Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð
Bÿ3 14 Ð Ð Ð k14, 4 Ð Ð k14,7 Ð Ð Ð k14,11 Ð Ð k14,14

Table 4
Number of correct solutions over 60 trials for the MAD test structures.

WL describes the wavelength combination; dashes denote forbidden
combinations (for the three-wavelength data).

WL ApD JIA KPR PSCP Cyanase Tm0665 TGEV AEP

1 0 0 8 11 0 0 0 6
2 1 0 2 7 55 0 3 5
3 2 1 10 22 60 6 0 4
4 3 4 Ð Ð 2 Ð 0 Ð
1-2 3 0 5 0 19 0 0 5
1-3 4 2 8 18 0 8 0 6
1-4 2 4 Ð Ð 0 Ð 0 Ð
2-3 2 6 10 10 59 3 0 7
2-4 7 2 Ð Ð 0 Ð 8 Ð
3-4 7 2 Ð Ð 0 Ð 5 Ð
1-2-3 3 3 6 25 40 12 0 9
1-2-4 4 3 Ð Ð 0 Ð 4 Ð
1-3-4 3 6 Ð Ð 0 Ð 2 Ð
2-3-4 3 7 Ð Ð 0 Ð 9 Ð
1-2-3-4 6 5 Ð Ð 0 Ð 10 Ð

Table 3
Results for the test structures.

WL describes the wavelength combination, nsol is the number of solutions and
naf is the number of anomalous scatterers located.

Protein code WL nsol naf

ApD 1-2-3-4 6 3/3
JIA 1-2-3-4 5 8/8
KPR 1-2-3 6 8/8
PSCP 1-2-3 25 12/13
Cyanase 1-2-3 40 40/40
Tm0665 1-2-3 12 44/45
TGEV 1-2-3-4 10 56/60
AEP 1-2-3 9 66/66

Glucose isomerase 1 2 1/1
2Zn insulin 1 53 2/2
Ca-Subtilisin 1 3 3/3
CauFd 1 1 8/8
DNA 1 4 10/10
Lysozyme 1 2 17/17
CUTA1 1 2 16/18
APT 1 6 16/22



and the ®rst two. It is easily understood that for the case n = 3

the elements of the columns kj4, kj7, kj11, kj14 (all relative to the

third wavelength) can be calculated by analogy with the terms

kj3, kj6, kj10 and kj13 of the same matrix (all relative to the

second wavelength) or, equivalently, by analogy with the

terms kj2, kj5, kj9 and kj12 (relative to the ®rst wavelength). For

example, for n = 3,

k14 � hAoaA�3 i � ��af o
j f 0j3�=���af o2

j ��N�f 02j3 � f 002j3 ��1=2;

k13 � hAoaA�2 i � ��af o
j f 0j2�=���af o2

j ��N�f 02j2 � f 002j2 ��1=2

and k12 (see the ®rst algebraic expression in this section) can

be obtained from the others by changing the wavelength-

dependent values f 0 and f 00.
In this recursive way, the matrix K may be constructed for

any value of n.

As soon as the matrix K has been obtained, the various

terms of the quadratic form TKÿ1T [see (2)] can be derived by

associating each �ij element with two elements of the vector T.

For example, �ij has to be associated with the two reference

variables with order numbers i and j, as has been performed

for (1) in the two-wavelength case.
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